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Abstract—The Universal Serial Bus (USB) is a widely
deployed technology that connects peripheral devices to
computer systems. Despite its popularity and the vast
number of existing USB enabled devices, assessing security
properties of the USB key components has received little
or no attention so far. This may be due to the infeasibility
of testing USB components. At present, arbitrary USB
behaviour cannot be implemented flexibly or inexpensively
thus making it hard to test USB stacks, USB drivers or
applications using the functionality a driver exposes.

This paper presents a design to automatically fuzz-
test key components of a USB enabled system. USB
communication with arbitrary contents will be generated
and exchanged with an operating system running on a
virtual machine.

The design was prototypically implemented and suc-
cessfully applied to a simple kernel driver. The results
suggest that USB exposes a considerable attack surface
and that real attacks are possible. They also demonstrate
that the design developed is capable of uncovering flaws
in kernel level drivers as well as user space applications.
It is also capable of detecting USB stack fingerprints of
various operating systems which can enable an attacker to
build a physical USB device which, when plugged in to the
victims machine, can be used to launch a targeted attack.

I. INTRODUCTION

The Universal Serial Bus (USB) [?] is a widely
adopted technology which replaced serial and paral-
lel IO ports in 1996. USB emerged because attach-
ing peripheral devices to a PC was cumbersome and
error-prone. This was primarily due to the traditional
IO paradigm which mapped the devices into the
CPU’s IO address space and assigned an interrupt
line (IRQ). The design of USB allows attaching,
configuring and accessing peripheral devices with
low cost and simplicity from the user’s perspective.
Other benefits include one interface for many de-
vices, automatic configuration, hot pluggability or
built-in power supply for the device [?]. A modern
PC is equipped with USB ports to attach keyboards,

mice, cameras, printers, scanners, hard-drives, mo-
bile phones or other devices. Even embedded sys-
tems such as printers or mobile phones have the
ability to attach devices via USB. Key features
of USB include its versatility, its inexpensiveness
and support by major operating systems. USB-3
brings speed improvements which will most likely
continue the success story of USB rendering even
more devices accessible via USB [?].

USB, however, also has limitations. For example,
devices cannot be placed further than five metres
away without an intervening hub and messages have
to go through the operating system’s USB stack,
so direct communication between devices is not
possible.

When an operating system encounters a device
attached via USB, it needs to load the appropriate
driver to expose the functionality of the device to the
user. Presently, although nowadays some drivers can
be written in user-space1, many drivers still reside
in kernel space, not only for legacy reasons but also
for performance or convenience purposes [?].

Even though kernel developers are usually very
experienced and kernel code is subject to repeated
review, varying code quality for USB drivers can
be expected for multiple reasons. Not only do many
different devices exist which require numerous dif-
ferent drivers, but these devices will also have time-
to-market constraints which not allow for driver
code security audits. Examining the history of the
Linux kernel source code2 supports that claim.

If those drivers in kernel space were vulnerable,
an attacker could gain elevated privileges because it
can be assumed that the kernel runs with the highest

1Using libusb, which provides a high level API to communicate
with a USB device

2i.e. by executing git log -grep=’overflow’ in the USB
driver directory
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privileges on the system.
Several concrete attack scenarios exist. An at-

tacker could manipulate elections if a USB-based
voting device [?] was used. Publicly available com-
puters with USB interfaces could be attacked by
simply plugging in a malicious device. Such a
public computer could be a photo-terminal used to
load photos to be printend from a pendrive or a
digital camera, a PC in a library or an unsupervised
machine in a shop. Even some aircraft have an
in-flight entertainment system which allows USB
devices to be plugged in to listen to songs on
portable music players or view documents on a
pendrive [?]. But the attacker does not necessarily
need to physically attach a malicious device herself.
Simply distributing a new and expensive looking
device (i.e. a digital camera or music player) will
most likely lure the victim to plug the device
into her computer and thus allow the attacker gain
control over it. It is also possible to run USB over
IP networks (using USB/IP [?]) and Wireless USB
[?] uses radio technology as the transport layer for
USB. Thus, physical access to the targeted machine
is not necessarily needed.

Given the popularity of USB and the expected
privileges, exploiting USB is very attractive to an
attacker. Consequently, being able to uncover flaws
and to fix them is important. Finding bugs, however,
often is a non-trivial task, especially in the case
of USB, quite simply because providing arbitrary
input for the USB driver is not easily possible today,
without a USB development board which allows
delivery of arbitrary data.

This work presents a method to attach USB
devices to a virtual machine and to generate ar-
bitrary packets in software. The USB devices are
written in software allowing to run tests without
needing to physically attach real USB hardware.
Additionally, tests are conducted using packets with
payload produced by “fuzzing”.

Traditionally, fuzzing is the generation of random
and unexpected characters which will be fed to a
program to test its robustness [?]. Here, instead
of random characters, valid USB communication is
obtained, decoded, modified and replayed to stress-
test particular drivers.

This paper is structured as follows. Section II
describes fuzzing techniques and why fuzzing is

a viable approach to identify vulnerabilities. Sec-
tion III lists the components involved around a
USB-enabled system. Section IV discusses how the
components can be tested using the described tech-
niques. Section V details how the implementation
was performed and results obtained. Section VI
concludes this paper and gives an overview of future
work.

II. FUZZING

This section describes the fuzzing technique that
will be used to search for vulnerabilities in USB
stacks, drivers and applications.

“Fuzzing” (or “fuzz testing”) was coined in the
late 80’s while trying “to evaluate the robustness
of various UNIX utility programs, given an unpre-
dictable input stream ” [?].

Fuzzing has advantages over other methods of
uncovering bugs such as manual code review or
static analysis. Static analysis examines the source
code and runs checks based on the code, i.e. calls
to unbounded strcpy. The results might, however,
include false positives not only because the static
analyser might not be able to operate effectively on a
complex system but also because runtime behaviour
cannot be predicted accurately if the program de-
pends on external input. Thus, exploitability might
not be possible even if a theoretical vulnerability
exists. Fuzzing results are likely to be exploitable,
because the input, which is necessary to produce
the erroneous state, is generated during the fuzzing
process [?]. As opposed to other methods, fuzzing
simulates a regular user using the tested program.
Hence, the generated malicious input can also be
issued by a real user and thus reach the erroneous
state.

Fuzzing is also well suited to expose bugs in
kernel level drivers as shown by Keil and Kolbitsch
in [?].

Tradionally, fuzzing is used to conduct blackbox
and state-less tests with randomly generated bytes.
Blackbox because the fuzzer does not know any-
thing about the tested program. Since knowledge
of internals of the program is not required, this
general purpose approach is widely applicable. The
drawback of this method, however, is its inability to
test either specific input fields or complex protocols.
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State-less because the fuzzer generates bytes inde-
pendently of each other regardless of the context or
semantics of that byte. Thus, if the input is expected
to contain a checksum over the randomly generated
bytes and that checksum is not properly updated,
the program aborts processing and the fuzzer tests
only the checksum validation code. Those fuzzers
are labelled “dumb”.

“Smart” fuzzers take into account properties of
the expected input and can thus force the tested
program to execute more code paths. Also, specific
fields of the expected input can be tested, i.e. the
field indicating a length. This allows the generated
payload to penetrate deeper into the tested program,
thus testing more aspects of the program. This is
also known as “schema-based fuzzing” because a
known pattern is modified [?].

Because the USB protocol is stateful and most
packets have a fixed structure, this paper follows
such a schema-based approach using Scapy [?].

Scapy is a framework that is designed to interact
with packets on ethernet networks. It is able to sniff,
dissect, craft and send packets based on a high level
description in the Python programming language. It
is primarily used to craft and manipulate packets
on various network layers resulting in a powerful
networking framework to rapidly create tools for
conducting various tests, “but instead of dealing
with a hundred line C program, you only write 2
lines of Scapy” [?].

For example, many specialised tools exist to send
packets with double 802.1q encapsulation (VLAN
hopping) or to launch ARP poisoning attacks. But
reusing their functionality or applying them in an
alternative manner is not easily possible. Scapy
overcomes these problems by allowing any packets
to stack on top of each other and to fill any
field of any packet with any value. Scapy enables
therefore the execution of an ARP poisoning attack
via VLAN hopping simply by inducing it generate
the necessary packets, stacking and sending them.

It also provides a fuzz() function to generate
packets with random yet appropriate values for the
packet’s fields. This includes the width in bits of the
generated value as well as adjusting modelled de-
pendencies such as checksums or length indicating
fields.

Listing 1 shows our schema which will be used

c l a s s U S B In D e v i c e De s c r i p to r ( P a c k e t ) :
name = ’DeviceDescriptor’

f i e l d s _ d e s c = [
5 L E S h o r t F i e l d (’bcdUSB’ , 0 x0200 ) ,

ByteEnumField (’bDeviceClass’ , 0 ,
CLASS_ENUMS) ,

ByteEnumField (’bDeviceSubClass’ , 0 ,
SUBCLASS_ENUMS) ,

ByteEnumField (’bDeviceProtocol’ , 0 ,
PROTOCOL_ENUMS) ,

B y t e F i e l d (’bMaxPacketSize’ , 64 ) ,
10 LEXShortEnumField (’idVendor’ , 0 x f f f f ,

VENDOR_ENUMS) ,
LEXShor tF ie ld (’idProduct’ , 0 x1337 ) ,
L E S h o r t F i e l d (’bcdDevice’ , 0 x2342 ) ,
B y t e F i e l d (’iManufacturer’ , 0 ) ,
B y t e F i e l d (’iProduct’ , 0 ) ,

15 B y t e F i e l d (’iSerialNumber’ , 0 ) ,
B y t e F i e l d (’bNumConfigurations’ , 0 ) ,

]
Listing 1. Python code representing a device descriptor using Scapy

for fuzzing. Each field is assigned a type and has
functions which generate appropriate values for the
fuzzing process3.

III. USB COMPONENTS

This section describes the key components that
an operating system needs in order to support USB.
Some of these components will later be targets of
attacks.

Figure 1 shows the fundamental parts of a USB
system. At the bottom a USB device is connected
with the USB controller on the host at the electrical
layer. The USB controller is controlled by the USB
stack which takes care of low level USB message
passing and other USB protocol-related aspects such
as error correction. The USB stack sends and re-
ceives messages from either sources or sinks on
the device, called endpoints. Connections to end-
points build logical pipes between the host and
the device which are exported to drivers. Upon the
USB stack, various drivers are implemented which
use the provided USB messaging capabilities to
exchange messages either via control, isochronous,
bulk or interrupt transfer packets. The drivers may
reuse already existing functionality from one or

3The used fields do not exist in the last released Scapy (v. 2.1.1 at
the time of writing) and had to be written. They are submitted to the
projects revision control system and can be downloaded from there.
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Figure 1. Key components of a system with USB support

more subsystems (i.e. SCSI for hard-drives or v4l
for video cameras). Applications can then use the
device through one of the various interfaces that a
driver could expose (i.e block device or mmap()).

After a device has been plugged in, the operating
system asks the device for its details in order to
establish the pipes and to know which driver to load.
This process is called “enumeration” and it involves
so called descriptors to be sent from the device to
the host. Every USB device is asked by the USB
standard to answer a set of commands that might
be issued during enumeration.

As shown in Figure 2, four descriptor types exist:
device, interface, endpoint and string descriptor.
The very first descriptor requested by the operating
system is the device descriptor which describes
basic aspects of the device in question such as a
globally unique vendor ID, a product ID, the “class”
of the device and the number of “configurations”
which the operating system can select the device
to run under. A configuration describes, among
other things, whether the device is self-powered or
how many “interfaces” the devices exposes. The
class indicates that a device speaks a well defined
protocol to expose its functionality. Defined classes
include mass-storage, audio or video. A device can
also announce to not belong to a prefined class or to
implement several classes. In the latter case the class

Device Descriptor

Configuration

Interface

Endpoint

Configuration

Interface

Endpoint Endpoint

Interface

Endpoint

Figure 2. Descriptor hierarchy

information is attached to the interface which is
described by an interface descriptor. It also contains
information about the number of available endpoints
which in turn have their own descriptor defining the
packet size and the interval for the host to poll for
new messages [?].

Once the enumeration is complete, the kernel
loads the appropriate driver. To find a suitable driver
the kernel first4 looks at the vendor ID and product
ID. If it finds a driver that claims to be responsible
for that device it will be loaded. If no driver is
found a generic driver for the class of the device
(or the interface) will be sought. The driver is then
reponsible for exposing features of the device to the
user [?].

These components can be attacked using fuzz-
testing. The electrical layer, however, is not of
interest in this work because we focus on fully auto-
mated virtualised testing. Thus physical connections
are out of scope. The USB stack can be attacked,
i.e. by signalling many device attachments or by
interfering with the enumeration process. Knowing
the driver-loading mechanism and the structure of
the descriptors allows us to trigger a certain driver
to be loaded which in turn enables us to send fuzzed
messages to the driver and thus assess its robustness.
Furthermore, it is possible to send messages to
applications if the higher level protocol is known.
However, due to their limited applicability and im-
pact, attacks on applications are not as compelling
as their driver counterparts. Therefore, focus was

4This is considering the Linux kernel, but other operating systems
do it similarly
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Figure 3. Architecture of the automated fuzz-testing setup

given on rendering the latter possible.

IV. IMPLEMENTATION

To find vulnerabilities in the components men-
tioned in Section III using the techniques described
in Section II, a prototypical architecture was built
which allows automated testing. It closely follows
the design by Jodeit and Johns in [?] which was
capable of finding flaws in user-space applications.
It will be shown that this design is able to find flaws
in kernel drivers. If a vulnerability is found, driver
exploitation is possible according to [?].

Figure 3 depicts the built setup. To allow auto-
mated tests the host operating system runs a fully
virtualised guest operating system. Note that it is
possible to do the testing on the host itself. However,
potential crashes of the kernel and lost log-files
are inherent drawbacks of that approach. Instead
of talking to physical devices, the virtual machine
pipes USB communication in and out to a separate
process on the host which behaves like a regular
USB device. The guest operating system cannot tell
the difference between a physically connected USB
device and a virtually attached device. The virtual
device then generates USB packets using fuzzing.
A monitor watches the guest operating system and
reports if unexpected behaviour, i.e. a crash, occurs.
A controlling component is responsible for actually
spawning the above mentioned components.

The actual implementation uses QEMU [?] as
virtualisation software to run the guest operating

system. QEMU is a free virtualisation solution
that fully virtualises different CPUs along with the
necessary hardware such as hard-drive, network
interface or USB controller. It allows complete and
unmodified operating systems to be run in a virtual
machine. It also allows the machine state to be saved
and loaded at a later time. This can be used to
prepare a virtual machine that is fully booted or has
a special program started so that testing will take
less time. QEMU supports physical USB devices
to be passed from the host to the guest. It also
supports simple virtual internal USB devices such
as keyboard or mouse implemented inside QEMU to
allow delivery of keystrokes or mouse movements
from the host to the guest.

Piping USB communication in and out is not
supported by the last released QEMU version at the
time of writing5. It was thus enhanced in two steps:
First with a USB packet filter functionality and
then with support for external virtual USB devices.
The latter is depicted in Figure 3. The USB packet
filter intercepts communication between the guest
operating system and a USB device attached to a
Linux host6. The intercepted packets are piped out
to a process on the host and read back in. The
process on the host can thus either write the packets
out to disk or modify them in place.

QEMU also provides several options to control
the virtual machine. One of them is the QEMU
Monitor Protocol (QMP) which manages the vir-
tual machine by exchanging well structured data
in JavaScript Object Notation (JSON) format [?].
Unfortunately, at the time of writing5, only a subset
of the existing management functions were available
via QMP. Thus, in order to make the work presented
in this paper possible, more capabilities were added
to the QMP to allow at least attachment and removal
of USB devices being it physical devices which
are passed through by the host or emulated devices
backed by a pipe7.

In order to carry out the schema-based fuzz-
testing we need to obtain the schema first. Basically
two approaches exist: Either valid communication

5with QEMU 0.12.5 released on 2010-23-07
6Porting this filter to other platforms such as BSD should be trivial
7These enhancements have been submitted to a decentralised

repository at http://muelli.cryptobitch.de/usbfuzz/qemu.git and wait
for inclusion by the QEMU maintainers
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patterns can be crafted by looking at the pro-
tocol specification or valid USB packets can be
recorded for subsequent decoding. Note that for
dumb fuzz-testing, knowing the semantics is not
needed. For this implementation, the latter approach
was choosen because of time constraints as the rel-
evant USB specifications span thousands of pages.

On Linux, the recording of actual USB communi-
cation could have been done with the usbmon mod-
ule provided by the kernel [?]. It exports the ongoing
communication via character devices which can be
read. However, a different method was choosen to
make it easier to reuse the data for the fuzzing
process. A USB device was attached to the host
and passed through to QEMU. The guest running in
QEMU started to communicate with the USB device
and the above mentioned USB filter functionality
was used to record the USB conversation.

Since the filter allows packets to be modified in
place as they are in transit, this would already enable
fuzz-testing. However, it would not be automatable
since a physical device needed to be plugged in
to the host. Also, only dumb fuzzing could be
conducted as the obtained packets have not been
decoded.

In order to build Scapy models for the packets,
the USB specification [?] was used to dissect the
packets and determine the types of the packet’s
fields, i.e. Short or IntEnum. This led to a
proper description of the protocol and packets used
for enumeration which in turn allowed easy packet
generation and modification using Scapy’s facilities.

A. USB Device Emulation

Although QEMU supports virtual internal USB
devices as described above, they are not backed
by an external program. To keep this framework
modular, a second feature for QEMU was imple-
mented: Support for virtual external USB devices
which are backed by a pipe so that USB packets
are, as with the USB packet filter mentioned above,
piped out to the host and read back in. Because
the interface to the virtual machine consists of
two named pipes only, the internals of the virtual
machine are abstracted and implementing a software
USB device is much simpler than writing a new
virtual internal USB device for QEMU.

The actual fuzzing is done in the USB Device
Emulation component which is responsible for gen-
erating USB packets and writing them to the virtual
machine’s USB in-pipe. Hence, the virtual USB
device can do as simple things as replaying already
obtained packets. Naturally, dumb-fuzzing can be
applied on these packets.

Two generations of software USB devices were
produced. The first and simple generation reads
previously obtained packets and decodes them. A
configuration then tells the software device which
fields in which type of packet have to be fuzzed
before sending them to the host. Obviously, this
can resemble dumb-fuzzing by simply configuring
all packet types and all fields to be fuzzed. The
second generation is a stand-alone state-machine
which autonomously answers packets from the host.
To save time this automaton did not implement
every command required by the USB specification
but rather only the commands which were used in
the initially obtained USB communication. Again,
packet types and fields to be fuzzed need to be
configured.

B. Monitoring

In order to detect whether the tested operating
system behaves unexpectedly (i.e. crashes), a mon-
itoring component reports back every predefined
number of seconds. It needs to implement a rea-
sonable probe routing which is capable of detecting
whether the guest operating system is still fully
operational. The probe can be implemented as a
simple check whether opening a TCP connection to
a port on the guest is successful or as a complex
routine that logs on to the guest, retrieves and
analyses log-files.

In this framework, the monitoring component is
realised as a Python module which is loaded in
a separate thread by the controlling component.
Thus communication between the controlling com-
ponent and the monitor is possible using Python
objects. The separate thread enables the monitor to
accidentally block and not stall the execution of
the controlling component. The controller regularly
executes the monitor’s is_alive function and
assumes the guest operating system to be dysfunc-
tional after a predefined number of probes have not
been answered. The monitor is also reponsible for
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exposing information that is valuable for identifying
potential malfunction, i.e. by writing out log files
that were obtained from the guest operating system.

C. Controlling

A controlling component is responsible for
starting the virtual machine, attaching virtual USB
devices and alert when the virtual machine does
not behave as expected.

To run many fuzz-tests, even on multiple ma-
chines, the design presented in this paper does not
require elevated privileges and is able to be run in
many instances in parallel. Also, the components
can easily be exchanged, as long as the interfaces
are implemented. The interfaces are simple by
design: Two named pipes for the emulated USB
device, a Python module for the monitoring instance
and a process to be called for the virtual machine.
This implies that any type of virtual USB device,
not only a fuzzer, can be used in this framework.
Given the ability to prototype a USB device in
software using a rather high level description for
Scapy, this framework might be helpful for driver
programmers to test whether their implementation
fulfils functional requirements.

V. EVALUATION

This section summarises the findings the imple-
mentation mentioned in Section IV yielded.

While testing the second generation emulated
USB device with different guest operating systems
different behaviour in the enumeration process was
observed. Variations are caused by different imple-
mentations of the USB stack. Table I shows different
behaviour of various USB stacks. These samples
were obtained by attaching a software USB device
that answers with zero bytes only. It it thus possible
for a USB device to tell operating systems apart.
This enables an attacker to launch platform specific
attacks.

It was also observed, that QEMU’s virtual USB
controller sent uninitialized memory to the device
with “IN” transactions, which is similar to Ether-
leaking which exposes memory via padding for
Ethernet packets [?]. Even if this “USB Leaking”
does not happen with real hardware USB controllers

it can be used by a USB device to be able to detect
whether it is attached to a virtual machine.

The USB stack of the guest operating systems
were tested rather by accident than on purpose.
While testing whether the implemented USB soft-
ware devices work, they often crashed and dis-
rupted the communication and produced errors in
the guest’s USB stack. All errors were handled
gracefully by generating a proper error message and
thus no flaws were exposed. Trying to rapidly attach
many USB devices only uncovered bugs in QEMU
and not in the USB stack of the guest operating
system. In fact, QEMU monopolizes the CPU after
attaching 40 devices to the guest.

To test whether USB drivers could be exploited,
a Linux driver with a buffer overflow vulnerability
was dedicatedly written. The framework was con-
figured to make the guest load the driver. Upon
receiving a specially formatted message, the driver
crashed the kernel and left the system in an unop-
erational state. The monitor realised the machine
malfunctioning and reported it to be dead. The
controller raised an alarm and made necessary in-
formaton available that is needed to reproduce the
crash. Existing drivers, however, were not tested due
to time constraints.

It is known that applications are exploitable with
the presented design based on work by Jodeit and
Johns in [?]. Hence, no applications were tested in
this paper.

The previous paragraphs show that this prototyp-
ical implemenation is capable of finding flaws in
the identified key components of a USB enabled
system. Future work should concentrate on making
the presented framework test existing drivers of
different operating systems.

VI. CONCLUSION

This section will conclude the achievements, dis-
cuss limitations and show how future work can
further improve the presented work.

Firsly, the need for evaluating the security of USB
key components was identified as being necessary
when assessing the security of a USB enabled
system in Section I. The reason being the USB
drivers in kernel space, which are a very com-
pelling target for an attacker not only because of
the elevated privileges but also because of the wide
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Operating System Packet Sequence Retries Remarks
Windows XP SP 2&3, 7 SETUP, IN, OUT 3 IN length: 64
Linux 2.6.33 SETUP (9 times), RESET 4+2 4 get descriptor then 2 set address
OpenBSD 4.7 SETUP, IN, OUT 7 IN length: 8
FreeBSD 8.0 SETUP, IN, OUT 6 tries to set address right away

Table I
USB STACK FINGERPRINTS OF VARIOUS OPERATING SYSTEMS

deployment of USB. Actual attack scenarios, which
include manipulation of elections or interfering with
a computer system in an aircraft, were given.

Secondly, fuzzing techniques were introduced,
classified and discussed in Section II. Furthermore,
it was shown that fuzzing is well suited to expose
bugs in kernel level drivers.

Thirdly, an overview of USB and its key compo-
nents was given in Section III. Three layers were
identified as being attackable with the presented
framework: USB stack, drivers on top and appli-
cations using the exposed functionality.

Fourthly, a design to automatically fuzz-test the
identified components was presented and work that
was necessary to build the architecture was outlined
in Section IV. In order to build the framework
various free software products had to be patched,
including Scapy and QEMU. The former was im-
proved by adding new fields to describe packets
used in USB communication. The latter was en-
hanced with a USB packet filter as well as support
for external software USB devices backed by named
pipes. Those modifications were published and are
awaiting inclusion by the product’s maintainers.

The presented architecture uses a software-based
USB device to generate fuzzed packets. As of now,
the software device supports enumeration and parts
of the mass-storage protocol only. More protocols
are needed to penetrate deeper into the drivers.
That, however, is tedious but can be helped by
recording and decoding actual communication as
shown earlier.

The architecture is universal in the sense that
knowledge of the guest operating system is not
required. If Linux is the guest operating system,
we do, however, know about the inner workings.
Unfortunately, this information is not taken account
when building the fuzzed packets.

Finally, obtained results were presented in Sec-

tion V and they identify the design as being capable
of finding flaws in USB kernel drivers. The USB
stack could not sufficiently be tested though, due to
bugs in the QEMU implementation.

A limitation of the presented work is the lack of
support for the already specified USB-3. Although
it is already supported by Linux, QEMU does not
support USB-3 yet. While the general framework
should also work with USB-3 enabled operating sys-
tems, additional features need to be implemented in
the virtual USB device in order to test new features
of USB-3 such as device initiated communication.

The fully virtualised approach may also not un-
cover time critical bugs. USB operates in frames
of one millisecond and as the fuzzing framework
is running in userspace it might not be able to
guarantee processing in time.

As already mentioned, real drivers that are actu-
ally shipped with an operating system, need to be
tested in order to not only theoretically prove the
capabilities of the presented work.

However, the way for easily carrying fuzz-testing
with the ability to smartly and precisely fuzz fields
of USB packets has been paved and the modular de-
sign of the framework makes it easy to be adapted.
Other than that, USB stacks of different operating
systems have been fingerprinted.

In order to actually exploit a found vulnerabiltity
in real life, physical hardware still needs to be
built or programmed. Future work should thus con-
centrate on converting the software prototype to
hardware. Such programmable USB hardware token
exist and are commercially available.
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\begin{abstract}
The Universal Serial Bus (USB) is a widely deployed technology that connects peripheral devices to computer systems.
Despite its popularity and the vast number of existing USB enabled devices,
assessing security properties of the USB key components has received little or no attention so far.
% 
% A potential reasons might be that USB is still thought of requiring physical access
% which is not something an operating system protects against.
% But it will be shown that physical accss is not necessarily needed to operate USB devices.
This may be due to the infeasibility of testing USB components.
At present, arbitrary USB behaviour cannot be implemented flexibly or inexpensively thus making it hard to test USB stacks, USB drivers or applications using the functionality a driver exposes.

This paper presents a design to automatically fuzz-test key components of a USB enabled system.
USB communication with arbitrary contents will be generated and exchanged with an operating system running on a virtual machine.

The design was prototypically implemented and successfully applied to a simple kernel driver.
The results suggest that USB exposes a considerable attack surface and that real attacks are possible.
They also demonstrate 
% It will thus be shown 
that the design developed is capable of uncovering flaws in kernel level drivers as well as user space applications.
It is also capable of detecting USB stack fingerprints of various operating systems which can enable
an attacker to build a physical USB device which, when plugged in to the victims machine, can be used to launch a targeted attack.

% This supports the claim that USB exposes a considerable attack surface and that real attacks are possible.
% an attack vector.



% If various USB behaviour could be implemented easily and cheaply, a great diversity of maliciously acting USB devices could be tested with little effort. 
% The goal is to implement a USB fuzzing framework using a virtualisation software that allows to automatically test different USB behaviour to stress-test USB-Stacks, Drivers and applications. 
% 
% 
% 
% 
% While hardware approaches would be possible, a virtual approach using virtualisation software will be taken. That allows any guest Operating System, including Windows and Linux, to be tested, as well as cheap and quick creation of tests and reliable reproduction of the obtained results. 
% 
% Ideally, this results in exploits for each of the three identified vulnerable layers: 
% • USB Stack in the Operating System 
% • USB Driver for the attached device (i.e. Web-cam) 
% • Application using data from the USB device 
% 
% Thus following questions will be addressed: 
% • How secure are USB stacks when it comes to weird devices? 
% • How resistant are drivers when specially crafted payload is sent? 
% • How good are applications that act upon a new USB device and read its data? 

\end{abstract}
% \tableofcontents
% \pagebreak
\section{Introduction} \label{sec:intro}
The Universal Serial Bus (USB) \cite{compaq_universal_2000} is a widely adopted technology which replaced serial and parallel IO ports 
% is widely adopted by now, after it was introduced 
in 1996.
% 
USB emerged because attaching peripheral devices to a PC was cumbersome and error-prone.
This was primarily due to the traditional IO paradigm which mapped the devices into the CPU's IO address space and assigned an interrupt line (IRQ).
The design of USB allows attaching, configuring and accessing peripheral devices with low cost and simplicity from the user's perspective.
Other benefits include one interface for many devices, automatic configuration, hot pluggability or built-in power supply for the device \cite{anderson_usb_1997}.
% 
% Today, every reasonably recent 
A modern PC is equipped with USB ports to attach keyboards, mice, cameras, printers, scanners, hard-drives,  mobile phones or other devices.
Even embedded systems such as printers or mobile phones have the ability to attach devices via USB.
Key features of USB include its versatility, its inexpensiveness and support by major operating systems.
%
USB-3 brings speed improvements which will most likely continue the success story of USB
rendering 
even more devices accessible via USB \cite{axelson_usb_2009}.

USB, however, also has limitations. 
For example, devices cannot be placed further than five metres away without an intervening hub and messages have to go through the operating system's USB stack, so direct communication between devices is not possible.



When an operating system encounters a device attached via USB, it needs to load the appropriate driver to expose the functionality of the device to the user.
Presently, although nowadays some drivers can be written in user-space\footnote{Using libusb, which provides a high level API to communicate with a USB device}, many drivers still reside in kernel space, not only for legacy reasons but also for performance or convenience purposes \cite{corbet_linuxdrivers_2005}.
%

Even though kernel developers are usually very experienced and kernel code is subject to repeated review, varying code quality for USB drivers can be expected for multiple reasons.
Not only do many different devices exist which require numerous different drivers, but these devices will also have time-to-market constraints which not allow for driver code security audits.
Examining the history of the Linux kernel source code\footnote{i.e.\, by executing \texttt{git log  --grep='overflow'} in the USB driver directory} supports that claim.
% This can frequently be seen in the Linux kernel source-code revision control system.


If those drivers in kernel space were vulnerable, an attacker could gain elevated privileges because it can be assumed that the kernel runs with the highest privileges on the system.



Several concrete attack scenarios exist.
An attacker could manipulate elections if a USB-based voting device \cite{arzt_votinpen_2007} was used.
Publicly available computers with USB interfaces could be attacked by simply plugging in a malicious device.
Such a public computer could be a photo-terminal used to load photos to be printend from a pendrive or a digital camera, a PC in a library or an unsupervised machine in a shop.
Even some aircraft have an in-flight entertainment system which allows USB devices to be plugged in to listen to songs on portable music players or view documents on a pendrive \cite{thales_IFE_2006}.
%
But the attacker does not necessarily need to physically attach a malicious device herself.
Simply distributing a new and expensive looking device (i.e.\, a digital camera or music player) will most likely lure the victim to plug the device into her computer and thus allow the attacker gain control over it. % \FIXME{get study which distributes malware via CD-ROMs or Pendrives on the streets. Maybe \url{http://www.sicherheit.info/si/cms.nsf/si.ArticlesByDocID/1101488?Open}}
It is also possible to run USB over IP networks (using USB/IP \cite{hirofuchi_usbip_2005}) and Wireless~USB \cite{leavitt_for_2007} uses radio technology as the transport layer for USB.
Thus, physical access to the targeted machine is not necessarily needed.


Given the popularity of USB and the expected privileges, exploiting USB is very attractive to an attacker.
Consequently, being able to uncover flaws and to fix them is important.
Finding bugs, however, often is a non-trivial task, especially in the case of USB, quite simply because providing arbitrary  input for the USB driver is not easily possible today, without  a USB development board which allows delivery of arbitrary data.
%

This work presents a method to attach USB devices to a virtual machine and to generate arbitrary packets in software.
The USB devices are written in software
% making physical hardware obsolete during the testing process and thus 
allowing to run tests without needing to physically attach real USB hardware.
% This is a great benefit over traditional testing method which required a physical USB device to be plugged in to the machine.
Additionally, tests are conducted using packets with payload produced by ``fuzzing''.

% The fuzzing methodology presented in this paper will allow to expose those problems in an automated fashion.
Traditionally, fuzzing is the generation of random and unexpected characters which will be fed to a program to test its robustness \cite{takanen_fuzzing_2008}.
Here, instead of random characters, valid USB communication is obtained, decoded, modified and replayed to stress-test particular drivers.
%
% leads to exploitable, because errors are triggered by user input 

% To allow automation and easy reproduction of results, a virtualised approach is followed.
% A virtual machine will run a guest operating system and a virtual USB device will subsequently be attached.
% The USB communication will be written out to a named pipe so that the virtual USB device, which is just another process, can read the packets and generate answers.
% These will also be written to a named pipe which the virtual machine reads and forwards to the guest operating system.
% Thus, the whole process of testing an operating systems behaviour can be automated. \FIXME{ That sounds weird and only loosely attached, maybe just get rid of that} %FIXME: That sounds weird and only loosely attached, maybe just get rid of that
% However, due to complexity of the protocols, fuzzing will not necessarily cover all code paths thus producing many false negatives.


% Malicious
% 
% 
% Exploits in User-space are old. Techniques are well known 
% 
% Kernel-space
% Higher appeal,  privileges


This paper is structured as follows.
\Autoref{sec:techniques} describes fuzzing techniques and why fuzzing is a viable approach to identify vulnerabilities.
\Autoref{sec:usb-components} lists the  components involved around a USB-enabled system.
\Autoref{sec:implementation} discusses how the components can be tested using the described techniques.
\Autoref{sec:evaluation} details how the implementation was performed and results obtained.
% \Autoref{sec:limitations} discusses the limitations of the presented approach and identifies future work. \FIXME{maybe get rid of that limitations sections}
\Autoref{sec:conclusion} concludes this paper and gives an overview of future work.


\section{Fuzzing} \label{sec:techniques}
This section describes the fuzzing technique that will be used to search for vulnerabilities in USB stacks, drivers and applications.


``Fuzzing'' (or ``fuzz testing'') was coined in the late 80's while trying
% \begin{quotation}
\inlinequote{%
  to evaluate the robustness of various UNIX utility
programs, given an unpredictable input stream
}
\cite{takanen_fuzzing_2008}.
% \end{quotation}


Fuzzing has advantages over other methods of uncovering bugs such as manual code review or static analysis. % or model checking.
Static analysis examines the source code and runs checks based on the code, i.e.\, calls to unbounded \texttt{strcpy}.
The results might, however, include false positives not only because the static analyser might not be able to operate effectively on a complex system but also
because runtime behaviour cannot be predicted accurately  if the program depends on external input.
Thus, exploitability might not be possible even if a theoretical vulnerability exists.
Fuzzing results \emph{are} likely to be exploitable, because the input, which is necessary to produce the erroneous state, is generated during the fuzzing process
%.
% 
% Model checking is theoretical approach.
% Source code required
 \cite{banks_snooze_2006}%
.
As opposed to other methods, fuzzing simulates a regular user using the tested program.
Hence, the generated malicious input can also be issued by a real user and thus reach the erroneous state.
% This input is proven by the fuzz-testing to produce an error condition based and since fuzzing uses data input regular 
%\cite{engler_static_vs_model_check_2004}

Fuzzing is also well suited to expose bugs in kernel level drivers as shown by Keil and Kolbitsch in \cite{keil_stateful_2007}.

Tradionally, fuzzing is used to conduct blackbox and state-less tests with randomly generated bytes.
Blackbox because the fuzzer does not know anything about the tested program.
Since knowledge of internals of the program is not required, this general purpose approach is widely applicable.
% Not requiring to know internals of the program makes it a general purpose approach which is applicable to many situations.
The drawback of this method, however, is its inability to test either specific input fields or complex protocols.
%
State-less because the fuzzer generates bytes independently of each other regardless of the context or semantics of that byte.
Thus, if the input is expected to contain a checksum over the randomly generated bytes and that checksum is not properly updated, the program aborts processing and the fuzzer  tests only the checksum validation code.
Those fuzzers are labelled ``dumb''. % and they work well for unstructured data

``Smart'' fuzzers take into account properties of the expected input and can thus force the tested program to execute more code paths.
Also, specific fields of the expected input can be tested, i.e.\, the field indicating a length.
This allows the generated payload to penetrate deeper into the tested program, thus testing more aspects of the program.
This is also known as ``schema-based fuzzing'' because a known pattern is modified \cite{patent:ms_schema_fuzzing_2008}% \cite{patent:ms_integeroverflow_2009}
.



Because the USB protocol is stateful and most packets have a fixed structure,
this paper follows such a schema-based approach using Scapy \cite{biondi_scapy_2010}%
.

Scapy is a framework that is designed to interact with packets on ethernet networks.
% It has also been used to handle non-ethernet network packets, namely GSM \cite{welte_fuzzing_2009}.
It is able to sniff, dissect, craft and send packets based on a high level description in the Python programming language.
%
It is primarily used to craft and manipulate packets on various network layers resulting in a powerful networking framework to rapidly create tools for conducting various tests,
% \begin{quotation}
\inlinequote{%
but instead of dealing with a hundred line C program, you only write 2 lines of Scapy%
}
\cite{biondi_scapydoc_2010}.
% \end{quotation}

For example, many specialised tools exist to send packets with double 802.1q encapsulation (VLAN hopping) or to launch ARP poisoning attacks.
But reusing their functionality or applying them in an alternative manner is not easily possible.
Scapy overcomes these problems by allowing any packets to stack on top of each other and to fill any field of any packet with any value.
Scapy enables therefore the execution of an ARP poisoning attack via VLAN hopping  simply by inducing it generate the necessary packets, stacking and sending them.


It also provides a \texttt{fuzz()} function to generate packets with random yet appropriate values for the packet's fields.
This includes the width in bits of the generated value as well as adjusting modelled dependencies such as checksums or length indicating fields.


\lstset{commentstyle=\color{PineGreen}\bfseries,
keywordstyle=\color{BlueViolet}\bfseries,
stringstyle=\ttfamily\color{BrickRed},
% stepnumber=5,
% frame=single,
% morekeywords={LEShortField,ByteEnumField,ByteField},keywordstyle=\color{red}
numbersep=-0.75em ,
firstnumber=1,
}
% \lstset{backgroundcolor=\color{darkgray}}
\lstset{emph={LEShortField}, emphstyle=\color{RoyalPurple}}
\lstset{emph=[2]{ByteEnumField}, emphstyle=[2]\color{Periwinkle}}
\lstset{emph=[3]{ByteField}, emphstyle=[3]\color{MidnightBlue}}
\lstset{emph=[4]{LEXShortEnumField}, emphstyle=[4]\color{CadetBlue}}
\lstset{emph=[5]{LEXShortField}, emphstyle=[5]\color{NavyBlue}}
\begin{lstlisting}[language=Python,%
float=t,%
label={device-descriptor-code},%
caption={Python code  representing a device descriptor using Scapy}]
class USBInDeviceDescriptor(Packet):
    name = 'DeviceDescriptor'
 
    fields_desc = [
        LEShortField('bcdUSB', 0x0200),
        ByteEnumField('bDeviceClass', 0, CLASS_ENUMS),
        ByteEnumField('bDeviceSubClass', 0, SUBCLASS_ENUMS),
        ByteEnumField('bDeviceProtocol', 0, PROTOCOL_ENUMS),
        ByteField('bMaxPacketSize', 64),
        LEXShortEnumField('idVendor', 0xffff, VENDOR_ENUMS),
        LEXShortField('idProduct', 0x1337),
        LEShortField('bcdDevice', 0x2342),
        ByteField('iManufacturer', 0),
        ByteField('iProduct', 0),
        ByteField('iSerialNumber', 0),
        ByteField('bNumConfigurations', 0),
    ]
\end{lstlisting}   


\Autoref{device-descriptor-code} shows our schema which will be used for fuzzing.
Each field is assigned a type and has functions which generate appropriate values for the fuzzing process%
\footnote{The used fields do not exist in the last released Scapy (v. 2.1.1 at the time of writing) and had to be written. They are submitted to the projects revision control system and can be downloaded from there.}%
.
% Also, dependencies between fields can be modelled.





\section{USB Components} \label{sec:usb-components}

This section describes the key components that an operating system needs in order to support USB.
Some of these components will later be targets of attacks.

\begin{figure}
  \begin{center}\includegraphics[width=\linewidth]{usb-kernel-ipe.pdf}\end{center}
%   \begin{center}\includegraphics[scale=1]{usb-kernel-ipe.pdf}\end{center}
%   \begin{center}\input{Diagram1-dia}\end{center}
  \caption{Key components of a system with USB support}
  \label{pic:usb-scheme}
\end{figure}
\Autoref{pic:usb-scheme} shows the fundamental parts of a USB system.
At the bottom a USB device is connected with the USB controller on the host at the electrical layer.
The USB controller is controlled by the USB stack which takes care of low level USB message passing and other USB protocol-related aspects such as error correction.
The USB stack sends and receives messages from either sources or sinks on the device, called endpoints.
Connections to endpoints build logical pipes between the host and the device which are exported to drivers.
% 
Upon the USB stack, various drivers are implemented which use the provided USB messaging capabilities to exchange messages either via control, isochronous, bulk or interrupt transfer packets.
% 
% 
The drivers may reuse already existing functionality from one or more subsystems (i.e.\, SCSI for hard-drives or v4l for video cameras).
Applications can then use the device through one of the various interfaces that a driver could expose (i.e\, block device or \texttt{mmap()}).



After a device has been plugged in, the operating system asks the device for its details 
in order to establish the pipes and to know which driver to load.
This process is called ``enumeration'' and it involves so called descriptors to be sent from the device to the host.
Every USB device is asked by the USB standard to answer a set of commands that might be issued during enumeration. 
% The  enumeration process is standardised and all USB devices are asked to implement .


As shown in \Autoref{pic:descriptor-hierarchy}, four descriptor types exist: device, interface, endpoint and string descriptor.
The very first descriptor requested by the operating system is the device descriptor which describes basic aspects of the device in question such as a globally unique vendor ID, a product ID,  %
%pointers to strings holding human readable information about the vendor and the product.
the ``class'' of the device
and
the number of ``configurations'' which the operating system can select the device to run under.
% 
A configuration describes, among other things, whether the device is self-powered or how many ``interfaces'' the devices exposes% under this configuration%
.
The class indicates that a device speaks a well defined protocol to expose its functionality.
Defined classes include mass-storage, audio or video.
A device can also announce to not belong to a prefined class or to implement several classes.
% Those classes and their protocols are defined by the The USB Implementers Forum (USB-IF), which is responsible for defining the USB standards, 
%
In the latter case the class information is attached to the interface which is described by an interface descriptor.
It also contains information about the number of available endpoints which in turn have their own descriptor defining the packet size and the interval for the host to poll for new messages
\cite{compaq_universal_2000}%
.
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\caption{Descriptor hierarchy} \label{pic:descriptor-hierarchy}
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% A typical enumeration process looks like this:
% 
% 
% \begin{figure*}
%   \begin{center}\includegraphics[width=\linewidth]{setup-packet.pdf}\end{center}
% %   \begin{center}\includegraphics[scale=1]{usb-kernel-ipe.pdf}\end{center}
% %   \begin{center}\input{Diagram1-dia}\end{center}
%   \caption{SETUP packet, requesting a Device Descriptor}
%   \label{pic:get-device-descriptor}
% \end{figure*} 
% \Autoref{pic:get-device-descriptor} shows a device descriptor requesting packet sent from the host to the device.
% It depicts a packet in two layers: QemuUSB,  which is the lower level transport protocol spoken with Qemu
% and USBSetup which is the logical USB packet.
% The device then answers with its descriptor as shown in \autoref{pic:device-descriptor}.
% % 
% \begin{figure*}
%   \begin{center}\includegraphics[width=\linewidth]{descriptor-packet.pdf}\end{center}
% %   \begin{center}\includegraphics[scale=1]{usb-kernel-ipe.pdf}\end{center}
% %   \begin{center}\input{Diagram1-dia}\end{center}
%   \caption{Device Descriptor Packet of a Webcam}
%   \label{pic:device-descriptor}
% \end{figure*} 
% 
% \Autoref{pic:device-descriptor} shows a device descriptor sent by a device descriptor packet.
% The device anwers with a 

% 

Once the enumeration is complete, the kernel loads the appropriate driver%.
% Although finding and loading a driver is operating system dependent 
% and the following description describes how Linux does it.
% But other operating systems do it the following steps will be taken this way or the other by other operating systems%
% , too%
.
To find a suitable driver the kernel first\footnote{This is considering the Linux kernel, but other operating systems do it similarly} looks at the vendor ID and product ID.
If it finds a driver that claims to be responsible for that device it will be loaded.
%
If no driver is found a generic driver for the class of the device (or the interface) will be sought.
The driver is then reponsible for exposing features of the device to the user %.
 \cite{venkateswaran_essential_2008}%
.

These components can be attacked using fuzz-testing.
The electrical layer, however, is not of interest in this work because we focus on fully automated virtualised testing.
Thus physical connections are out of scope.
% 
The USB stack can be attacked, i.e.\, by signalling many device attachments or by interfering with the enumeration process.
% 
Knowing the driver-loading mechanism and the structure of the descriptors allows us to trigger a certain driver to be loaded which in turn enables us to send fuzzed messages to the driver and thus assess its robustness.
Furthermore, it is possible to send messages to applications if the higher level protocol is known.
% However, due to thas per \Autoref{sec:intro}, the drivers are the most interesting part to attack.
However, due to their limited applicability and impact, attacks on applications are not as compelling as their driver counterparts. 
Therefore,  focus was given on rendering the latter possible.% in this work.
% These attacks are more limited in applicability and impact than their driver counterpart.
% An application usually runs with few privileges in user-space whereas the driver run with full privileges in kernel-space.
% not only because an application does not run in kernel space, but also because the victim can easily replace the vulnerable application, but not the driver for the device.
% The presented work make these attacks possible.
% fdsfdas dly

%  USB Sniffing..?

% A USB device may be divided into three layers:
%   •  The bottom layer is a bus interface that transmits and receives packets.
%   •  The middle layer handles routing data between the bus interface and various endpoints on the device.
%     An endpoint is the ultimate consumer or provider of data. It may be thought of as a source or sink for
%     data.
%   •  The top layer is the functionality provided by the serial bus device, for instance, a mouse or ISDN
%     interface.
% 
% 
% As part of the configuration process, the host sets the device configuration and, where necessary, selects the
% appropriate alternate settings for the interfaces.
% Within a single configuration, a device may support multiple interfaces. An interface is a related set of
% endpoints that present a single feature or function of the device to the host. The protocol used to
% communicate with this related set of endpoints and the purpose of each endpoint within the interface may be
% specified as part of a device class or vendor-specific definition.







  
  
  
  



\section{Implementation} \label{sec:implementation}
To find vulnerabilities in the components mentioned in \Autoref{sec:usb-components} using the techniques described in \Autoref{sec:techniques}, a prototypical architecture was built which allows automated testing.
It closely follows the design by Jodeit and Johns in \cite{jodeit_usb_2010} which was capable of finding flaws in user-space applications.
It will be shown that this design is able to find flaws in kernel drivers.
If a vulnerability is found, driver exploitation is possible according to \cite{keil_kernel-mode_2007}.



\begin{figure}
%   \begin{center}\includegraphics[width=\linewidth]{setup-scheme-ipe.pdf}\end{center}
  \begin{center}\includegraphics[scale=1]{setup-scheme-ipe.pdf}\end{center}
  \caption{Architecture of the automated fuzz-testing setup}
  \label{pic:setup-scheme}
\end{figure}
\Autoref{pic:setup-scheme} depicts the built setup.
To allow automated tests the host operating system runs a fully virtualised guest operating system.
Note that it is possible to do the testing on the host itself.
However, potential crashes of the kernel and lost log-files are inherent drawbacks of that approach.
Instead of talking to physical devices, the virtual machine pipes USB communication in and out to a separate process on the host which behaves like a regular USB device.
The guest operating system cannot tell the difference between a physically connected USB device and a virtually attached device.
The virtual device then generates USB packets using fuzzing.
A monitor watches the guest operating system and reports if unexpected behaviour, i.e.\, a crash, occurs.
A controlling component is responsible for actually spawning the above mentioned components.

The actual implementation uses QEMU \cite{bellard_qemu_2005} as virtualisation software to run the guest operating system.
QEMU is a free virtualisation solution that fully virtualises different CPUs along with the necessary hardware such as hard-drive, network interface or USB controller.
It allows complete and unmodified operating systems to be run in a virtual machine.
%
It also allows the machine state to be saved and loaded at a later time.
This can be used to prepare a virtual machine that is fully booted or has a special program started so that testing will take less time.
%
QEMU supports physical USB devices to be passed from the host to the guest.
It also supports simple virtual internal USB devices such as keyboard or mouse implemented inside QEMU to allow delivery of keystrokes or mouse movements from the host to the guest.

Piping USB communication in and out is not supported by the last released QEMU version at the time of writing\footnote{\label{foot:qemu-version}with QEMU 0.12.5 released on 2010-23-07}.
\newcounter{qemuversion}\setcounter{qemuversion}{\thefootnote}
It was thus enhanced in two steps:
First with a USB packet filter functionality and then with support for external virtual USB devices.
The latter is depicted in \Autoref{pic:setup-scheme}.
%
The USB packet filter intercepts communication between the guest operating system and a USB device attached to a Linux host\footnote{Porting this filter to other platforms such as BSD should be trivial}.
% FIXME: The necessary patch is shown in \ref{appendix:qemu-emul.c}
The intercepted packets are piped out to a process on the host and read back in.
The process on the host can thus either write the packets out to disk or modify them in place.



QEMU also provides several options to control the virtual machine.
One of them is the QEMU Monitor Protocol (QMP) which manages the virtual machine by exchanging well structured data in JavaScript Object Notation (JSON) format \cite{crockford_json_2006}.
Unfortunately, at the time of writing\hyperref[foot:qemu-version]{\footnotemark[\theqemuversion]}, only a subset of the existing management functions were available via QMP.
Thus, in order to make the work presented in this paper possible,
more capabilities were added to the QMP to allow at least attachment and removal of USB devices
being it physical devices which are passed through by the host or emulated devices backed by a pipe%
\footnote{These enhancements have been submitted to a decentralised repository at http://muelli.cryptobitch.de/usbfuzz/qemu.git and wait for inclusion by the QEMU maintainers}.








In order to carry out the schema-based fuzz-testing we need to obtain the schema first.
Basically two approaches exist:
% Either generate valid communication patterns by looking at the protocol specification or
% record valid USB packets and decode them.
Either valid communication patterns can be crafted by looking at the protocol specification or valid USB packets can be recorded for subsequent decoding. 
Note that for dumb fuzz-testing, knowing the semantics is not needed.
For this implementation, the latter approach was choosen because of time constraints as the relevant USB specifications span thousands of pages.

On Linux, the recording of actual USB communication could have been done with the \texttt{usbmon} module provided by the kernel \cite{zaitcev_usbmon_2005}.
It exports the ongoing communication via character devices which can be read.
However, a different method was choosen to make it easier to reuse the data for the fuzzing process.
A USB device was attached to the host and passed through to QEMU.
The guest running in QEMU started to communicate with the USB device and
the above mentioned USB filter functionality was used to record the USB conversation.

Since the filter allows packets to be modified in place as they are in transit,
this would already enable fuzz-testing.
However, it would not be automatable since a physical device needed to be plugged in to the host.
Also, only dumb fuzzing could be conducted as the obtained packets have not been decoded.

In order to build Scapy models for the packets, the USB specification \cite{compaq_universal_2000} was used to dissect the packets and determine the types of the packet's fields, i.e.\, \texttt{Short} or \texttt{IntEnum}.
This led to a proper description of the protocol and packets used for enumeration
which in turn 
allowed easy packet generation and modification using Scapy's facilities.


\subsection{USB Device Emulation}
Although QEMU supports virtual internal USB devices as described above, they are not backed by an external program.
To keep this framework modular, a second feature for QEMU was implemented: Support for virtual external USB devices which are backed by a pipe so that
USB packets are, as with the USB packet filter mentioned above, piped out to the host and read back in.
% 
Because the interface to the virtual machine consists of two named pipes only,
the internals of the virtual machine are abstracted and implementing a software USB device is much simpler than writing a new virtual internal USB device for QEMU.




The actual fuzzing is done in the USB Device Emulation component which is responsible for generating USB packets and writing them to the virtual machine's USB in-pipe.
Hence, the virtual USB device can do as simple things as replaying already obtained packets.
Naturally, dumb-fuzzing can be applied on these packets.

Two generations of software USB devices were produced.
%
The first and simple generation reads previously obtained packets and decodes them.
A configuration then tells the software device which fields in which type of packet have to be fuzzed before sending them to the host.
Obviously, this can resemble dumb-fuzzing by simply configuring all packet types and all fields to be fuzzed.
%
The second generation is a stand-alone state-machine which autonomously answers packets from the host.
To save time this automaton did not implement every command required by the USB specification but rather only the commands which were used in the initially obtained USB communication.
Again, packet types and fields to be fuzzed need to be configured.

% 



\subsection{Monitoring}
In order to detect whether the tested operating system behaves unexpectedly (i.e.\, crashes), a monitoring component reports back every predefined number of seconds.
It needs to implement a reasonable probe routing which is capable of detecting whether the guest operating system is still fully operational.
The probe can be implemented as a simple check whether opening a TCP connection to a port on the guest is successful or as a complex routine that logs on to the guest, retrieves and analyses log-files.

In this framework, the monitoring component is realised as a Python module which is loaded in a separate thread by the controlling component.
% Because it is a Python module, 
Thus communication between the controlling component and the monitor is possible using Python objects.
The separate thread enables the monitor to accidentally block and not stall the execution of the controlling component.
The controller regularly executes the monitor's \texttt{is\_alive} function and assumes the guest operating system to be dysfunctional after a predefined number of probes have not been answered.
%
The monitor is also reponsible for exposing information that is valuable for identifying potential malfunction, i.e.\, by writing out log files that were obtained from the guest operating system.




\subsection{Controlling}
A controlling component is responsible for starting the virtual machine, attaching virtual USB devices and alert when the virtual machine does not behave as expected.\\[1em]




To  run many fuzz-tests, even on multiple machines, the design presented in this paper
does not require elevated privileges and is able to be run in many instances in parallel.
% 
Also, the components can easily be exchanged, as long as the interfaces are implemented.
The interfaces are simple by design: Two named pipes for the emulated USB device, a Python module for the monitoring instance and  a process to be called for the virtual machine.
This implies that any type of virtual USB device, not only a fuzzer, can be used in this framework.
Given the ability to prototype a USB device in software using a rather high level description for Scapy, this framework might be helpful for driver programmers to test whether their implementation fulfils functional requirements.



% For the following evaluation, 


\section{Evaluation} \label{sec:evaluation}
This section summarises the findings the implementation mentioned in \Autoref{sec:implementation} yielded.
% First, other findings not related to the fuzzing process are described.

While testing the second generation emulated USB device with different guest operating systems
different behaviour in the enumeration process was observed.
Variations are caused by different implementations of the USB stack.% by different operating systems.
% This is  due to different implementations of USB stacks by different operating systems.
\begin{table*}
\begin{center}
\begin{tabular}{llll}
\textbf{Operating System} & \textbf{Packet Sequence} & \textbf{Retries} & \textbf{Remarks}\\ \hline
Windows XP SP 2\&3, 7%
% \footnotemark\newcounter{windowsversion}\setcounter{windowsversion}{\thefootnote}
 & SETUP, IN, OUT & 3 & IN length: 64\\
Linux 2.6.33%
% \footnotemark\newcounter{linuxversion}\setcounter{linuxversion}{\thefootnote}%
		    & SETUP (9 times), RESET & 4+2 & 4 get descriptor then 2 set address\\
OpenBSD 4.7%
% \footnotemark\newcounter{openbsdversion}\setcounter{openbsdversion}{\thefootnote}%
		    & SETUP, IN, OUT & 7 & IN length: 8\\
FreeBSD 8.0% 
% \footnotemark\newcounter{freebsdversion}\setcounter{freebsdversion}{\thefootnote}%
		    & SETUP, IN, OUT & 6 & tries to set address right away\\
\hline %\hline
\end{tabular}
\end{center}
\caption{USB Stack Fingerprints of various operating systems} \label{tab:fingerprints}
\end{table*} 
\Autoref{tab:fingerprints} shows different behaviour of various USB stacks.
These samples were obtained by attaching a software USB device that answers with zero bytes only.
% 
It it thus possible for a USB device to tell operating systems apart.
This enables an attacker to launch platform specific attacks. 



It was  also observed, that QEMU's virtual USB controller sent uninitialized memory to the device with ``IN'' transactions, which is similar to Etherleaking which exposes memory via padding for Ethernet packets \cite{biondi_scapydoc_2010}.
Even if this ``USB Leaking'' does not happen with real hardware USB controllers it can be used by a USB device to be able to detect whether it is attached to a virtual machine.



The USB stack of the guest operating systems were tested rather by accident than on purpose.
While testing whether the implemented USB software devices work, they often crashed and disrupted the communication and produced errors in the guest's USB stack.
All errors were handled gracefully by generating a proper error message and thus no flaws were exposed.
%
Trying to rapidly attach  many USB devices only uncovered bugs in QEMU and not in the USB stack of the guest operating system.
In fact, QEMU monopolizes the CPU after attaching 40 devices to the guest.


To test whether USB drivers could be exploited, a Linux driver with a buffer overflow vulnerability was dedicatedly written.
The framework was configured to make the guest load the driver.
Upon receiving a specially formatted message, the driver crashed the kernel and left the system in an unoperational state.
The monitor realised the machine malfunctioning and reported it to be dead.
The controller raised an alarm and made necessary informaton available that is needed to reproduce the crash.
Existing drivers, however, were not tested due to time constraints.

It is known that applications are exploitable with the presented design based on work by Jodeit and Johns in \cite{jodeit_usb_2010}.
Hence, no applications were tested in this paper.

% Although not very much data,
The previous paragraphs show that this prototypical implemenation is capable of finding flaws in the identified key components of a USB enabled system.
Future work should concentrate on making the presented framework test existing drivers of different operating systems.

% \begin{table}
%   \begin{center}
%     \begin{tabular}{l|l}
%       \textbf{Driver} & \textbf{Issue}\\ \hline
%       foo.c & Oops\\
%       bar.c & Buffer overflow\\
%       baz.c & Integer Overflow
%     \end{tabular}
%   \end{center}
%   \caption{Results of the fuzzing process}
%   \label{tab:results}
% \end{table}
% \autoref{tab:results} shows the results obtained with the fuzzing methodology.
% Interesting observations are foo and bar.
% 
% \subsection{Kernel}
% \subsection{Driver}
% \subsection{Application}



\section{Conclusion} \label{sec:conclusion}
This section will conclude the achievements,
discuss limitations  and
show how future work can further improve the presented work.


Firsly, the need for evaluating the security of USB key components was identified as being necessary when assessing the security of a USB enabled system in \Autoref{sec:intro}.
The reason being the USB drivers in kernel space, which are a very compelling target for an attacker not only because  of the elevated privileges but also because of the wide deployment of USB.
Actual attack scenarios, which include manipulation of elections or interfering with a computer system in an aircraft, were given.


Secondly, fuzzing techniques were introduced, classified and discussed in \Autoref{sec:techniques}.
% They were classified as either being dumb or smart
% and 
Furthermore, it was shown that fuzzing is well suited to expose bugs in kernel level drivers.

Thirdly, an overview of USB and its key components was given in \Autoref{sec:usb-components}.
Three layers were identified as being attackable with the presented framework: USB stack, drivers on top and applications using the exposed functionality.


Fourthly, a design to automatically fuzz-test the identified components was presented and work that was necessary to build the architecture was outlined in \Autoref{sec:implementation}.
In order to build the framework various free software products had to be patched, including Scapy and QEMU.
The former was improved by adding new fields to describe packets used in USB communication.
The latter was enhanced with a USB packet filter as well as support for external software USB devices backed by named pipes.
Those modifications were published and are awaiting inclusion by the product's maintainers.



The presented architecture uses a software-based USB device to generate fuzzed packets.
As of now, the software device supports enumeration and parts of the mass-storage protocol only.
More protocols are needed to penetrate deeper into the drivers.
That, however, is tedious but can be helped by recording and decoding actual communication as shown earlier.

The %proposed
architecture is universal in the sense that knowledge of the guest operating system is not required.
If Linux is the guest operating system, we do, however, know about the inner workings.
Unfortunately, this information is not taken account when building the fuzzed packets.

Finally, obtained results  were presented in \Autoref{sec:evaluation} and they identify the design as being capable of finding flaws in USB kernel drivers.
The USB stack could not sufficiently be tested though, due to bugs in the QEMU implementation.


% \section{Limitations} \label{sec:limitations}
A limitation of the presented work is the lack of support for the already specified USB-3.
Although it is already supported by Linux, QEMU does not support USB-3 yet.
While the general framework should also work with USB-3 enabled operating systems, additional features need to be implemented in the virtual USB device in order to test new features of USB-3 such as device initiated communication.


The fully virtualised approach may also not uncover time critical bugs.
USB operates in frames of one millisecond and as the fuzzing framework is running in userspace
it might not be able to guarantee processing in time.
% Even worse: Many processes increase the overhead. Fortunately, modern hardware is ableto cope with that.


As already mentioned, real drivers that are actually shipped with an operating system, need to be tested in order to not only theoretically prove the capabilities of the presented work.

However, the way for easily carrying fuzz-testing 
with the ability to smartly and precisely fuzz fields of USB packets
has been paved and the modular design of the framework makes it easy to be adapted.
Other than that,
USB stacks of different operating systems have been fingerprinted.



In order to actually exploit a found vulnerabiltity in real life, physical hardware still needs to be built or programmed.
Future work should thus concentrate on converting the software prototype to hardware.
Such programmable USB hardware token exist and are commercially available.
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