

THE MAGIC WORLD OF SEARCHABLE ENCRYPTION

- General Scenario
- 2 Why...? Ideas?
- 3 Approaches
- 4 Can we do better?
- Index based
- 6 Outlook
- Conclusions

General Scenario

General Scenario

User encrypts data, sends it to a server, forgets about it, then wants to search it for, e.g. substrings

Why...? - Ideas?

Motivation

Emails

Motivation

- Emails
- Documents

Example: Contacts

Example: More Concrete

Store

First Name	Last Name	Number
Alice	Foo	123
Bob	Foo	345
Eve	Bar	456

securely in the cloud $^{\text{TM}}$

Approaches

Plaintext

Now, the server knows your contacts. :-(

Simple Crypto

Encrypt all the things!

Simple Crypto - Search

Can we do better?

Deterministic Encryption of Keywords - Setup

Deterministic Encryption of Keywords - Search

Deterministic Encryption of Keywords - Problem

Deterministic Encryption of Keywords - Problem

Deterministic encryption sucks!

Keyword based - Setup (Song, Wagner, Perrig)

Encrypt-then-Mask

Search key $k_i = H_k(L_i)$

Magic Mask: T_i can be derived from S_i , i.e. $T_i = H_{ki}(S_i)$

Keyword based - Search

Speed

Plaintext size (King James Bible): 4.3 MB

Ciphertext size: 25 MB

Time to encrypt: 0.211 sec

Search (in seconds): • Foobar 0.181

- God 0.003
- towel: 0.155
- Eve 0.005
- wrath 0.014
- dragon 0.094

Index based

Plaintext Index - Search

Server

Ciphertext

Enc_k(Alice, Foo)

2 Enc_k(Bob, Foo)

3 Enc_k(Eve, Bar)

Plaintext Index - Hell of Synchronisation

Enc. Index based - Setup

Enc. Index based - Search

Communication Cost

Searchable Enc. Index

 $sk2 = H_k(search || Bar)$ $ik1 = H_k(index || Foo)$ $ik2 = H_k(index || Bar)$

Searchable Enc. Index - Search

Size matters

Index based - Cash et al. - Setup

Index based - Cash et al. - Setup (contd.)

Index based - Cash et al. - Setup (contd.)

Index based - Cash et al.

 $sk1 = H_k(search || Foo)$ $sk2 = H_k(search || Bar)$

$$ik1 = H_k(index || Foo)$$

 $ik2 = H_k(index || Bar)$

Server Ciphertext 1 Enc_k(Alice, Foo) 2 Enc_k(Bob, Foo) 3 Enc_k(Eve, Bar)

Index

Token	Value
H _{sk1} (0)	Enc _{ik1} ([1])
$H_{sk1}(1)$	Enc _{ik1} ([2])
H _{sk2} (0)	Enc _{ik2} ([3])

Index based - Cash et al. - Search

Speed

Plaintext size (King James Bible): 4.3 MB

Ciphertext size: 4.3 MB

Time to encrypt: 0.108 sec

Time to search: 0.001 sec

Outlook

Outlook

ullet So far: deterministic search token o statistical analysis

Outlook

- ullet So far: deterministic search token o statistical analysis
- Making existing approaches practical is a challenge (e.g. FHE)

Outlook

- ullet So far: deterministic search token o statistical analysis
- Making existing approaches practical is a challenge (e.g. FHE)
- ullet Implement and adapt!!1

Conclusions

Presented some schemes and their properties

- Presented some schemes and their properties
 - Det

- Presented some schemes and their properties
 - Det
 - Fast setup

- Presented some schemes and their properties
 - Det
 - Fast setup
 - search insecure

- Presented some schemes and their properties
 - Det
 - Fast setup
 - search insecure
 - Keyword (Song, Wagner, Perrig)

- Presented some schemes and their properties
 - Det
 - Fast setup
 - search insecure
 - Keyword (Song, Wagner, Perrig)
 - $\bullet \ \ \mathsf{Search} \ \mathsf{is} \ \mathsf{in} \ \mathsf{O}(\mathsf{n})$

- Presented some schemes and their properties
 - Det
 - Fast setup
 - search insecure
 - Keyword (Song, Wagner, Perrig)
 - Search is in O(n)
 - Index (Cash et al.)

- Presented some schemes and their properties
 - Det
 - Fast setup
 - search insecure
 - Keyword (Song, Wagner, Perrig)
 - Search is in O(n)
 - Index (Cash et al.)
 - Search is in O(1)

- Presented some schemes and their properties
 - Det
 - Fast setup
 - search insecure
 - Keyword (Song, Wagner, Perrig)
 - Search is in O(n)
 - Index (Cash et al.)
 - Search is in O(1)
 - Index maintenance needed (think: Update)

- Presented some schemes and their properties
 - Det
 - Fast setup
 - search insecure
 - Keyword (Song, Wagner, Perrig)
 - Search is in O(n)
 - Index (Cash et al.)
 - Search is in O(1)
 - Index maintenance needed (think: Update)
- slightly different features

- Presented some schemes and their properties
 - Det
 - Fast setup
 - search insecure
 - Keyword (Song, Wagner, Perrig)
 - Search is in O(n)
 - Index (Cash et al.)
 - Search is in O(1)
 - Index maintenance needed (think: Update)
- slightly different features
- more exist!

- Presented some schemes and their properties
 - Det
 - Fast setup
 - search insecure
 - Keyword (Song, Wagner, Perrig)
 - Search is in O(n)
 - Index (Cash et al.)
 - Search is in O(1)
 - Index maintenance needed (think: Update)
- slightly different features
- more exist!
- Searching on encrypted data is practical

Thanks!

References:

Dawn Xiaodong Song, David Wagner, Adrian Perrig: Practical Techniques for Searches on Encrypted Data. IEEE Symposium on Security and Privacy 2000: 44-55

David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk, Marcel-Catalin Rosu, Michael Steiner: Dynamic Searchable Encryption in Very-Large Databases: Data Structures and Implementation. NDSS 2014