
  



  

Making a modern operating 
system more secure

the GNOME way



  

Happy Software Freedom Day! \o/



  

Philosophy behind 
GNOME



  

Inclusiveness...



  

… end user experience



  

Accessible & usable by 
everyone

 l10n
 i18n
 Accessibility
 Usability



  

Freedom



  



  

“Filtering out extraneous
information is one of the basic
functions of consciousness”
― Barry Schwarz



  



  

Prompts are
dubious



  

Security prompts are
wrong



  

Interrupting the user 
to make a permanent 
security decision is

EVIL



  



  



  



  

Ellisons Law:
For every keystroke or 
click required to use a 
security feature the 
userbase declines by 
half.
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Containerise all the Apps!



  

Challenges for containerised 
Apps

 Access to X, DRI
 DBus, other Apps
 File-IO
 Sound, Video, Printing, …
 Grant access temporarily rather than 

   wholesale



  

Flatpak
A new way of distributing
applications in GNU/Linux

 Cross-distribution deployment
 runtimes and applications (OSTree)
 Sandboxing (bubblewrap)
 Invisible to the user
 Directly connect users and app developers



  

 Sandbox apps in chroot-like environments as
   an unprivileged user

 Implements a subset of the Kernel’s user
   namespaces feature to isolate processes

 Allows passing a list of seccomp filters to limit
   syscalls

Bubblewrap
Namespaces, cgroups, seccomp



  

 Limited access to the host system by default:
    No access to processes outside the sandbox (namespaces)
    No access to the network, session bus and devices
    Controlled execution of certain syscalls (seccomp filters)
    Read-only access to the runtime and app (bind mounts)
    read-write access to $HOME/.var/app/$APPID
    Controlled access to resources (cgroups)
    No access to host services (e.g. X/Wayland, system bus...)

The Sandbox – classic security

very limiting by default, but there are ways of dealing 
with that to run real-word applications...



  

 Grant access to UNIX domain sockets: X.org, Wayland,
 PulseAudio, System and Sesssion D-Bus...
 Grant access to specific devices: dri, kvm
 Grant access to see, use and/or own specific D-Bus names
 Share specific subsystems with the host (network, IPC)
 Fine-grained permissions for filesystem access
 Define extensions for runtimes or applications (e.g. l10n)

Punching holes



  

 Grant access to UNIX domain sockets: X.org, Wayland,
 PulseAudio, System and Sesssion D-Bus...
 Grant access to specific devices: dri, kvm
 Grant access to see, use and/or own specific D-Bus names
 Share specific subsystems with the host (network, IPC)
 Fine-grained permissions for filesystem access

Escaping the Sandbox through Portals
– modern security through interactivity



  



  

USB Security



  

When do you use USB?
And when not?
And who else uses your USB 
when you’re not aware..?
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