

Making a modern operating
system more secure

the GNOME way

Happy Software Freedom Day! \o/

Philosophy behind
GNOME

Inclusiveness...

… end user experience

Accessible & usable by
everyone

 l10n
 i18n
 Accessibility
 Usability

Freedom

“Filtering out extraneous
information is one of the basic
functions of consciousness”
― Barry Schwarz

Prompts are
dubious

Security prompts are
wrong

Interrupting the user
to make a permanent
security decision is

EVIL

Ellisons Law:
For every keystroke or
click required to use a
security feature the
userbase declines by
half.

610C B252 37B3
70E9 EB21 08E8
9CEE 1B6B 059B

598E

Containerise all the Apps!

Challenges for containerised
Apps

 Access to X, DRI
 DBus, other Apps
 File-IO
 Sound, Video, Printing, …
 Grant access temporarily rather than

 wholesale

Flatpak
A new way of distributing
applications in GNU/Linux

 Cross-distribution deployment
 runtimes and applications (OSTree)
 Sandboxing (bubblewrap)
 Invisible to the user
 Directly connect users and app developers

 Sandbox apps in chroot-like environments as
 an unprivileged user

 Implements a subset of the Kernel’s user
 namespaces feature to isolate processes

 Allows passing a list of seccomp filters to limit
 syscalls

Bubblewrap
Namespaces, cgroups, seccomp

 Limited access to the host system by default:
 No access to processes outside the sandbox (namespaces)
 No access to the network, session bus and devices
 Controlled execution of certain syscalls (seccomp filters)
 Read-only access to the runtime and app (bind mounts)
 read-write access to $HOME/.var/app/$APPID
 Controlled access to resources (cgroups)
 No access to host services (e.g. X/Wayland, system bus...)

The Sandbox – classic security

very limiting by default, but there are ways of dealing
with that to run real-word applications...

 Grant access to UNIX domain sockets: X.org, Wayland,
 PulseAudio, System and Sesssion D-Bus...
 Grant access to specific devices: dri, kvm
 Grant access to see, use and/or own specific D-Bus names
 Share specific subsystems with the host (network, IPC)
 Fine-grained permissions for filesystem access
 Define extensions for runtimes or applications (e.g. l10n)

Punching holes

 Grant access to UNIX domain sockets: X.org, Wayland,
 PulseAudio, System and Sesssion D-Bus...
 Grant access to specific devices: dri, kvm
 Grant access to see, use and/or own specific D-Bus names
 Share specific subsystems with the host (network, IPC)
 Fine-grained permissions for filesystem access

Escaping the Sandbox through Portals
– modern security through interactivity

USB Security

When do you use USB?
And when not?
And who else uses your USB
when you’re not aware..?

TM

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 10
	Slide 11
	Slide 13
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

